European ASP.NET 4.5 Hosting BLOG

BLOG about ASP.NET 4, ASP.NET 4.5 Hosting and Its Technology - Dedicated to European Windows Hosting Customer

European ASP.NET Core 9.0 Hosting - HostForLIFE :: Using the Shopping Cart Discount Function to Better Understand the Concept of a Rule Engine

clock September 30, 2024 09:30 by author Peter

Hello everyone, I hope everything is going well for you. We will examine the idea of a rule engine in this post, as well as how NRule (a.NET package) implements it. We will develop a new.NET 8 desktop application to demonstrate the shopping cart discount feature for users according to their membership status (Normal/Silver/Gold/VIP) in order to facilitate comprehension.

Now let's use NRule and Rule Engine together

A software program that carries out one or more business rules in a runtime production setting is called a rule engine. The policies may be derived from corporate guidelines, statutory regulations, or other sources. You may think of a rule engine as an advanced translator of if/then statements. A rule engine's main advantage is that its business rules may be written in a non-programmer's language and can be changed without affecting the application code underneath.

NRules - An Introduction
NRules is an open-source .NET rule engine that supports defining business rules separate from the system logic. It allows for rules to be written in C#, using internal DSL to express rule conditions and actions. NRules is highly extensible, can integrate with any .NET application, and supports dynamic rule compilation.
Shopping Cart Discount Logic Using NRules

In this example, we will create a simple console application in C# that uses NRules to apply different discount percentages based on the user's membership type (Normal, Silver, Gold, VIP).

Step 1. Set Up the Project
First, create a new Console Application in Visual Studio or using the .NET CLI. Then, add the NRules package and NRules.Runtime package via NuGet.

dotnet add package NRules
dotnet add package NRules.Runtime

Step 2. Define the Domain Model
Create classes for Customers and Orders
public class Customer
{
    public string MembershipType { get; set; }
}

public class Order
{
    public Customer Customer { get; set; }
    public decimal TotalAmount { get; set; }
    public decimal DiscountedAmount { get; set; }
}


Step 3. Define the Rules
Create a class MembershipDiscountRule for discount rules. We'll consolidate the rules into a single class for simplicity.
using RuleEngine_ShoppingCartDiscount.Models;
using NRules.Fluent.Dsl;
using System;

namespace RuleEngine_ShoppingCartDiscount
{
    public class MembershipDiscountRule : Rule
    {
        public override void Define()
        {
            Order order = null;

            When()
                .Match<Order>(() => order,
                              o => o.Customer != null,
                              o => o.DiscountedAmount == 0); // Ensure discount is not already applied

            Then()
                .Do(ctx => ApplyDiscount(order))
                .Do(ctx => ctx.Update(order));
        }

        private void ApplyDiscount(Order order)
        {
            var discount = order.Customer.MembershipType switch
            {
                "Normal" => 0.90m, // 10% discount
                "Silver" => 0.80m, // 20% discount
                "Gold" => 0.75m, // 25% discount
                "VIP" => 0.70m, // 30% discount
                _ => 1.00m // No discount
            };

            order.DiscountedAmount = order.TotalAmount * discount;
            Console.WriteLine($"Applied {((1 - discount) * 100)}% discount for {order.Customer.MembershipType} member. Total now: {order.DiscountedAmount}");
        }
    }
}


Step 4. Configure and Run the Rule Engine


In your Main method, set up the rule repository, compile rules, create a session, and create the list of Customers (Normal,Silver,Gold,MVP).

// See https://aka.ms/new-console-template for more information
// Load rules
using NRules;
using NRules.Fluent;
using RuleEngine_ShoppingCartDiscount;
using RuleEngine_ShoppingCartDiscount.Models;

var repository = new RuleRepository();
repository.Load(x => x.From(typeof(MembershipDiscountRule).Assembly));

// Compile rules
var factory = repository.Compile();

// Create a session
var session = factory.CreateSession();

var customers = new List<Customer>
{
    new Customer { MembershipType = "Normal" },
    new Customer { MembershipType = "Silver" },
    new Customer { MembershipType = "Gold" },
    new Customer { MembershipType = "VIP" }
};

// Create customer and order
foreach (var customer in customers)
{
    var order = new Order { Customer = customer, TotalAmount = 100 };

    // Insert facts into rules engine's memory
    session.Insert(order);

    // Start match/resolve/act cycle
    session.Fire();

    Console.WriteLine($"Final amount to pay: {order.DiscountedAmount}\n");
}

Console.ReadLine();


Step 5. Test the Application

Run the console application and it will print the All membership-based discount price.

Code Explanation

  • Rules Definition: A single rule handles all membership types by using a switch expression to determine the discount rate based on the membership type.
  • Rule Engine Setup: Rules are loaded, and compiled, and a session is created where the order is inserted as a fact.
  • Execution: The session.Fire() method triggers the rule engine, which evaluates the inserted facts against the compiled rules and applies the appropriate discount.

HostForLIFE ASP.NET Core 9.0 Hosting

European Best, cheap and reliable ASP.NET hosting with instant activation. HostForLIFE.eu is #1 Recommended Windows and ASP.NET hosting in European Continent. With 99.99% Uptime Guaranteed of Relibility, Stability and Performace. HostForLIFE.eu security team is constantly monitoring the entire network for unusual behaviour. We deliver hosting solution including Shared hosting, Cloud hosting, Reseller hosting, Dedicated Servers, and IT as Service for companies of all size.



European ASP.NET Core 9.0 Hosting - HostForLIFE :: Docker and Kubernetes: Containerizing React JS and.NET Core Applications

clock September 24, 2024 07:54 by author Peter

This tutorial will use React JS web forms and the.NET Core Web API to develop a prototype product application backend. Additionally, we will use Docker and Kubernetes to containerize the same process.

Example of a Product Application: Web API for Backend (.NET Core)
First, create a new Web API for Product Management using.NET Core.

Step 2: Install the NuGet packages listed below, which are for the in-memory database.

Step 3. Add the product class inside the entities folder.
namespace ProductManagementAPI.Entities
{
    public class Product
    {
        public int Id { get; set; }
        public string Name { get; set; }
        public decimal Price { get; set; }
    }
}

Step 4. Create an AppDbContext class inside the data folder with an in-memory connection and a DB set property.
using Microsoft.EntityFrameworkCore;
using ProductManagementAPI.Entities;
namespace ProductManagementAPI.Data
{
    public class AppDbContext : DbContext
    {
        public DbSet<Product> Products { get; set; }

        public AppDbContext(DbContextOptions<AppDbContext> options)
            : base(options)
        {
        }
        protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
        {
            // This check prevents configuring the DbContext if options are already provided
            if (!optionsBuilder.IsConfigured)
            {
                // Configure the in-memory database here, if needed
                optionsBuilder.UseInMemoryDatabase("InMemoryDb");
            }
        }
        protected override void OnModelCreating(ModelBuilder modelBuilder)
        {
            // Optionally configure entity mappings here
        }
    }
}


Step 5. Add a product repository inside the repositories folder.
IProductRepository
using ProductManagementAPI.Entities;
namespace ProductManagementAPI.Repositories
{
    public interface IProductRepository
    {
        Task<List<Product>> GetAllProductsAsync();
        Task<Product> GetProductByIdAsync(int id);
        Task AddProductAsync(Product product);
        Task UpdateProductAsync(Product product);
        Task DeleteProductAsync(int id);
    }
}

ProductRepository
using Microsoft.EntityFrameworkCore;
using ProductManagementAPI.Data;
using ProductManagementAPI.Entities;
namespace ProductManagementAPI.Repositories
{
    public class ProductRepository : IProductRepository
    {
        private readonly AppDbContext _context;
        public ProductRepository(AppDbContext context)
        {
            _context = context;
        }
        public async Task<List<Product>> GetAllProductsAsync()
        {
            return await _context.Products.ToListAsync();
        }
        public async Task<Product> GetProductByIdAsync(int id)
        {
            return await _context.Products
                .AsNoTracking()
                .FirstOrDefaultAsync(p => p.Id == id);
        }
        public async Task AddProductAsync(Product product)
        {
            if (product == null)
            {
                throw new ArgumentNullException(nameof(product));
            }

            _context.Products.Add(product);
            await _context.SaveChangesAsync();
        }
        public async Task UpdateProductAsync(Product product)
        {
            if (product == null)
            {
                throw new ArgumentNullException(nameof(product));
            }

            _context.Entry(product).State = EntityState.Modified;
            await _context.SaveChangesAsync();
        }
        public async Task DeleteProductAsync(int id)
        {
            var product = await _context.Products.FindAsync(id);
            if (product == null)
            {
                throw new KeyNotFoundException("Product not found.");
            }
            _context.Products.Remove(product);
            await _context.SaveChangesAsync();
        }

    }
}

Step 6. Create a new product controller with different action methods that we used to perform different operations using our front-end application after invoking the same.
using Microsoft.AspNetCore.Mvc;
using ProductManagementAPI.Entities;
using ProductManagementAPI.Repositories;
namespace ProductManagementAPI.Controllers
{
    [ApiController]
    [Route("api/[controller]")]
    public class ProductsController : ControllerBase
    {
        private readonly IProductRepository _repository;
        public ProductsController(IProductRepository repository)
        {
            _repository = repository;
        }
        [HttpGet]
        public async Task<IActionResult> GetAllProducts()
        {
            var products = await _repository.GetAllProductsAsync();
            return Ok(products); // Returns only the list of products
        }
        [HttpGet("{id}")]
        public async Task<IActionResult> GetProductById(int id)
        {
            var product = await _repository.GetProductByIdAsync(id);
            if (product == null)
            {
                return NotFound();
            }
            return Ok(product); // Returns only the product data
        }
        [HttpPost]
        public async Task<IActionResult> AddProduct([FromBody] Product product)
        {
            if (product == null)
            {
                return BadRequest();
            }
            await _repository.AddProductAsync(product);
            return CreatedAtAction(nameof(GetProductById), new { id = product.Id }, product);
        }
        [HttpPut("{id}")]
        public async Task<IActionResult> UpdateProduct(int id, [FromBody] Product product)
        {
            if (product == null || id != product.Id)
            {
                return BadRequest();
            }
            await _repository.UpdateProductAsync(product);
            return NoContent();
        }
        [HttpDelete("{id}")]
        public async Task<IActionResult> DeleteProduct(int id)
        {
            await _repository.DeleteProductAsync(id);
            return NoContent();
        }
    }

}

Step 7. Register our services inside the service container and configure the middleware.
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Options;
using ProductManagementAPI.Data;
using ProductManagementAPI.Repositories;
var builder = WebApplication.CreateBuilder(args);
// Add services to the container.
builder.Services.AddScoped<IProductRepository, ProductRepository>();
builder.Services.AddDbContext<AppDbContext>();
builder.Services.AddCors(options => {
    options.AddPolicy("CORSPolicy", builder => builder.AllowAnyOrigin().AllowAnyMethod().AllowAnyHeader());
});

// Configure in-memory database
builder.Services.AddDbContext<AppDbContext>(options =>
    options.UseInMemoryDatabase("InMemoryDb"));

builder.Services.AddControllers();
// Learn more about configuring Swagger/OpenAPI at https://aka.ms/aspnetcore/swashbuckle
builder.Services.AddEndpointsApiExplorer();
builder.Services.AddSwaggerGen();

var app = builder.Build();

// Configure the HTTP request pipeline.
app.UseCors("CORSPolicy");
app.UseSwagger();
app.UseSwaggerUI();
app.UseHttpsRedirection();
app.UseAuthorization();
app.MapControllers();
app.Run();

Step 8. Finally, run the application and use Swagger UI to execute different API endpoints.

Sample Product Application: Frontend (React JS)

Let’s create a client application using React JS and consume the above API endpoints within it.

Step 1. Create a new React JS application with the help of the following command.
npx create-react-app react-netcore-crud-app

Step 2. Navigate to your project directory.
cd react-netcore-crud-app

Step 3. Install Axios to consume and hit backend API and bootstrap for designing purposes.
npm install axios
npm install bootstrap


npm install axios
npm install bootstrap


Step 4. Add the following components and services.
Product list component
// src/components/ProductList/ProductList.js
import React, { useState, useEffect } from 'react';
import ProductListItem from './ProductListItem';
import productService from '../../services/productService';
const ProductList = () => {
    const [products, setProducts] = useState([]);
    useEffect(() => {
        fetchProducts();
    }, []);
    const fetchProducts = async () => {
        try {
            const productsData = await productService.getAllProducts();
            setProducts(productsData);
        } catch (error) {
            console.error('Error fetching products:', error);
        }
    };
    const handleDelete = async (id) => {
        try {
            await productService.deleteProduct(id);
            fetchProducts(); // Refresh product list
        } catch (error) {
            console.error('Error deleting product:', error);
        }
    };
    const handleEdit = () => {
        fetchProducts(); // Refresh product list after editing
    };
    return (
        <div className="container">
            <h2 className="my-4">Product List</h2>
            <ul className="list-group">
    {Array.isArray(products) && products.length > 0 ? (
        products.map(product => (
            <ProductListItem key={product.id} product={product} onDelete={() => handleDelete(product.id)} onEdit={handleEdit} />
        ))
    ) : (
        <p>No products available</p>
    )}
</ul>
        </div>
    );
};
export default ProductList;


Product list item component

// src/components/ProductList/ProductListItem.js
import React, { useState } from 'react';
import productService from '../../services/productService';
const ProductListItem = ({ product, onDelete, onEdit }) => {
    const [isEditing, setIsEditing] = useState(false);
    const [editedName, setEditedName] = useState(product.name);
    const [editedPrice, setEditedPrice] = useState(product.price);
    const handleEdit = async () => {
        setIsEditing(true);
    };
    const handleSave = async () => {
        const editedProduct = { ...product, name: editedName, price: parseFloat(editedPrice) };
        try {
            await productService.updateProduct(product.id, editedProduct);
            setIsEditing(false);
            onEdit(); // Refresh product list
        } catch (error) {
            console.error('Error updating product:', error);
        }
    };
    const handleCancel = () => {
        setIsEditing(false);
        // Reset edited values
        setEditedName(product.name);
        setEditedPrice(product.price);
    };
    return (
        <li className="list-group-item">
            {isEditing ? (
                <div className="row">
                    <div className="col">
                        <input type="text" className="form-control" value={editedName} onChange={e => setEditedName(e.target.value)} required />
                    </div>
                    <div className="col">
                        <input type="number" className="form-control" value={editedPrice} onChange={e => setEditedPrice(e.target.value)} required />
                    </div>
                    <div className="col-auto">
                        <button className="btn btn-success me-2" onClick={handleSave}>Save</button>
                        <button className="btn btn-secondary" onClick={handleCancel}>Cancel</button>
                    </div>
                </div>
            ) : (
                <div className="d-flex justify-content-between align-items-center">
                    <span>{product.name} - ${product.price}</span>
                    <div>
                        <button className="btn btn-danger me-2" onClick={onDelete}>Delete</button>
                        <button className="btn btn-primary" onClick={handleEdit}>Edit</button>
                    </div>
                </div>
            )}
        </li>
    );
};
export default ProductListItem;


Product service
// src/services/productService.js
import axios from 'axios';
const baseURL = 'https://localhost:7202/api/products';
const productService = {
    getAllProducts: async () => {
        try {
            const response = await axios.get(
              baseURL,
              {
                timeout: 3000,
                headers: {
                  Accept: 'application/json',
                },
              },
            );

            return response.data;
          } catch (err) {
            if (err.code === 'ECONNABORTED') {
              console.log('The request timed out.');
            } else {
              console.log(err);
            }
          }
    },
    addProduct: async (product) => {
        const response = await axios.post(baseURL, product);
        return response.data;
    },
    deleteProduct: async (id) => {
        const response = await axios.delete(`${baseURL}/${id}`);
        return response.data;
    },
    updateProduct: async (id, product) => {
        const response = await axios.put(`${baseURL}/${id}`, product);
        return response.data;
    }
};
export default productService;


App component
// src/App.js
import React, { useState } from 'react';
import ProductList from './components/ProductList/ProductList';
import ProductForm from './components/ProductForm/ProductForm';
function App() {
    const [refresh, setRefresh] = useState(false);
    const handleProductAdded = () => {
        setRefresh(!refresh); // Toggle refresh state to trigger re-render
    };
    return (
        <div>
            <ProductList key={refresh} />
            <ProductForm onProductAdded={handleProductAdded} />
        </div>
    );
}
export default App;


Step 5. Run the application using the following command and perform the different CRUD operations with the help of the same.

Docker Files for Application
Docker file for backend application (.NET Core).
# Use the official .NET Core SDK as a parent image
FROM mcr.microsoft.com/dotnet/sdk:6.0 AS build

WORKDIR /app

# Copy the project file and restore any dependencies (use .csproj for the project name)
COPY *.csproj ./
RUN dotnet restore

# Copy the rest of the application code
COPY . .

# Publish the application
RUN dotnet publish -c Release -o out

# Build the runtime image
FROM mcr.microsoft.com/dotnet/aspnet:6.0 AS runtime

WORKDIR /app
COPY --from=build /app/out ./

# Expose the port your application will run on
EXPOSE 80

# Start the application
ENTRYPOINT ["dotnet", "ProductManagementAPI.dll"]


  • Line 1-2: Uses the official .NET Core SDK image (mcr.microsoft.com/dotnet/sdk:6.0) as a base.
  • Line 4: Sets the working directory to /app.
  • Line 6-7: Copies the project file(s) (*.csproj) into the container.
  • Line 8: Runs dotnet restore to restore dependencies specified in the project file(s).
  • Line 10-11: Copies the rest of the application code into the container.
  • Line 13-14: Publishes the application in Release configuration (dotnet publish -c Release -o out), outputting to the out directory.
  • Line 16-17: Uses the official .NET Core ASP.NET runtime image (mcr.microsoft.com/dotnet/aspnet:6.0) as a base.
  • Line 19-20: Sets the working directory to /app and Copies the published output from the build stage (from /app/out) into the /app directory of the runtime stage.
  • Line 22-23: Exposes port 80 to allow external access to the application.
  • Line 25-26: Specifies dotnet ProductManagementAPI.dll as the entry point command to start the application.

Docker file for frontend application (React JS).
FROM node:16-alpine
WORKDIR /app
COPY . .
RUN npm install
RUN npm run build
EXPOSE 3000
CMD ["npm", "start"]

  • Line 1: specifies the base image, using Node.js version 18.
  • Line 2: sets /app as the working directory for subsequent commands.
  • Line 3: Copies the contents of your local directory into the container's working directory.
  • Line 4: Installs the project dependencies inside the container.
  • Line 5: Build the production version of your React app.
  • Line 6: This exposes port 3000, which is where the application will run.
  • Line 7: The command starts the React application using serve to serve the build folder.

Next, modify your backend hard-coded URL in the product service.
// src/services/productService.js
import axios from 'axios';

//const baseURL = 'https://localhost:31912/api/products';
const baseURL = process.env.REACT_APP_API_URL;

const productService = {
    getAllProducts: async () => {
        try {
            const response = await axios.get(
              baseURL,
              {
                timeout: 3000,
                headers: {
                  Accept: 'application/json',
                },
              },
            );

            return response.data;
          } catch (err) {
            if (err.code === 'ECONNABORTED') {
              console.log('The request timed out.');
            } else {
              console.log(err);
            }
          }
    },
    addProduct: async (product) => {
        const response = await axios.post(baseURL, product);
        return response.data;
    },
    deleteProduct: async (id) => {
        const response = await axios.delete(`${baseURL}/${id}`);
        return response.data;
    },
    updateProduct: async (id, product) => {
        const response = await axios.put(`${baseURL}/${id}`, product);
        return response.data;
    }
};

export default productService;

Containerize the front-end and back-end application
Step 1. Build the docker images
docker build -t productbackendapp:latest .

docker build -t productfrontendapp:latest .

Step 2. Create a deployment and service YAML files for the backend application.

deployment.yml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: product-management-api
  labels:
    app: product-management-api
spec:
  replicas: 1
  selector:
    matchLabels:
      app: product-management-api
  template:
    metadata:
      labels:
        app: product-management-api
    spec:
      containers:
      - name: product-management-api
        image: productbackendapp:latest
        imagePullPolicy: Never
        ports:
        - containerPort: 80

service.yml
apiVersion: v1
kind: Service
metadata:
  name: product-management-api-service
  labels:
    app: product-management-api
spec:
  type: NodePort
  ports:
    - protocol: TCP
      port: 80
      targetPort: 80
  selector:
    app: product-management-api


Step 3. Create deployment, service, and backend-config map YAML files for the frontend application.

deployment.yml

apiVersion: apps/v1
kind: Deployment
metadata:
  name: react-client-deployment
spec:
  replicas: 1
  selector:
    matchLabels:
      app: react-client
  template:
    metadata:
      labels:
        app: react-client
    spec:
      containers:
      - name: react-client
        image: productfrontendapp:latest
        imagePullPolicy: Never
        ports:
        - containerPort: 3000
        env:
        - name: REACT_APP_API_URL
          valueFrom:
            configMapKeyRef:
              name: backend-config
              key: REACT_APP_API_URL


service.yml
apiVersion: v1
kind: Service
metadata:
  name: react-client-service
spec:
  selector:
    app: react-client
  ports:
    - protocol: TCP
      port: 80
      targetPort: 3000
  type: NodePort


backend-configmap.yml
apiVersion: v1
kind: ConfigMap
metadata:
  name: backend-config
data:
  REACT_APP_API_URL: "http://localhost:30191/api/products"

Step 4. Apply all the above files one by one using kubectl commands. (Note: make sure Kubernetes is running on your system with docker daemon.)
kubectl apply -f deployment.yml
kubectl apply -f service.yml
kubectl apply -f backend-configmap.yml


Step 5. Verify the deployment, services, pods, and config map are up and running or not with the help of kubectl commands.

Step 6. Hit the backend and frontend product application using services.

 

Conclusion
In this article, we created a product management backend application using .NET Core with different API endpoints that are required to perform CRUD operations. Later on, we created the front-end application using React JS and consumed the back-end application inside the same with the help of Axios. Also, we containerized both applications with the help of Docker and Kubernetes.

HostForLIFE ASP.NET Core 9.0 Hosting

European Best, cheap and reliable ASP.NET hosting with instant activation. HostForLIFE.eu is #1 Recommended Windows and ASP.NET hosting in European Continent. With 99.99% Uptime Guaranteed of Relibility, Stability and Performace. HostForLIFE.eu security team is constantly monitoring the entire network for unusual behaviour. We deliver hosting solution including Shared hosting, Cloud hosting, Reseller hosting, Dedicated Servers, and IT as Service for companies of all size.



European ASP.NET Core 9.0 Hosting - HostForLIFE :: ASP.NET Core IActionFilter Explanation

clock September 20, 2024 07:30 by author Peter

We will discuss ASP.NET Core IActionFilter in this article. Okay, let's get going.

What in ASP.NET Core are Filters?

Cross-cutting issues like logging, authentication, authorization, exception handling, caching, etc. are added via filters.

We can carry out cross-cutting logic in the following ways thanks to filters:

  • Before a controller action method handles an HTTP request.
  • Following the handling of an HTTP request by a controller action method.
  • Prior to being delivered to the client, but after the response has been prepared.

Action Filters in the Core ASP.NET
In the ASP.NET Core, action filters run both before and after an action method. They carry out operations such as logging, modifying the arguments used in the action, and changing the outcome.

IActionFilter

IActionFilter is an interface in ASP.NET Core that lets you see and control the actions that are running in your application. It offers ways to provide unique behavior both before and after an action method is called. IActionFilter is an effective tool for cross-cutting issues, but there are benefits and drawbacks to its use.

Advantages of IActionFilter

  • Cross-Cutting Concerns: It allows you to handle cross-cutting concerns like logging, validation, caching, or authentication in a clean and centralized manner instead of scattering those concerns across multiple action methods.
  • Reusable Logic: Filters can be reused across multiple controllers and actions, promoting DRY (Don't Repeat Yourself) principles in your codebase.
  • Separation of Concerns: By using action filters, you can separate concerns between the action logic and the filtering logic, leading to cleaner, more maintainable code.
  • Execution Order Control: Action filters can be ordered using the `Order` property, providing flexibility in the execution sequence of filters, which is essential for scenarios where the order of execution matters.
  • Access to Action Context: Action filters have access to the action context, allowing them to inspect and modify request data easily or affect the result that gets returned.

Disadvantages of IActionFilter

  • Complexity: Introducing filters can add complexity to your application. When multiple filters are used, understanding the execution flow can become difficult, especially with dependencies between filters.
  • Performance Overhead: Each action filter adds a slight overhead to the execution of requests, which can accumulate, particularly in high-throughput applications. It's essential to ensure that filters are efficient and necessary.
  • Tight Coupling: If not used judiciously, filters may lead to tight coupling between your API's action methods and the filters, making it harder to test and maintain individual components.
  • Limited Scope: Filters operate on action methods, meaning they cannot be applied globally to things like middleware or other request pipelines. If you need a broader application of logic, you might need a different approach.
  • Difficulty in Testing: While filters can be reusable, they can also complicate unit tests. Mocking dependencies or asserting functionality across multiple layers can become challenging.

Example
TimeActionFilter logs the execution time of action methods. The OnActionExecuting method captures the start time, while OnActionExecuted calculates the elapsed time and logs it.
// Create TimeActionFilter

  public class TimeActionFilter : IActionFilter
    {
        private Stopwatch stopwatch;

        public void OnActionExecuting(ActionExecutingContext filterContext)
        {
            stopwatch = Stopwatch.StartNew();
            Debug.WriteLine($"Stopwatch Started");
        }

        public void OnActionExecuted(ActionExecutedContext filterContext)
        {
            stopwatch.Stop();
            var elapsedMilliseconds = stopwatch.ElapsedMilliseconds;
            // log the elapsed time
            Debug.WriteLine($"Action '{filterContext.ActionDescriptor.DisplayName}' executed in {elapsedMilliseconds} ms");
        }
    }

// Register the filter in Startup.cs

public void ConfigureServices(IServiceCollection services)
  {
    services.AddControllers(options =>
     {
         options.Filters.Add(typeof(TimeActionFilter));
     });
  }

HostForLIFE ASP.NET Core 9.0 Hosting

European Best, cheap and reliable ASP.NET hosting with instant activation. HostForLIFE.eu is #1 Recommended Windows and ASP.NET hosting in European Continent. With 99.99% Uptime Guaranteed of Relibility, Stability and Performace. HostForLIFE.eu security team is constantly monitoring the entire network for unusual behaviour. We deliver hosting solution including Shared hosting, Cloud hosting, Reseller hosting, Dedicated Servers, and IT as Service for companies of all size.




European ASP.NET Core 9.0 Hosting - HostForLIFE :: Use and Examples of the Response Cache Attribute in .NET Core

clock September 11, 2024 06:52 by author Peter

Response caching is the technique by which a browser or other client stores a server's response in memory. As a result, requests for the same resources will be processed more quickly in the future. Additionally, this will spare the server from processing and producing the same response over and over again. ASP.NET Core uses the ResponseCache property to set the response caching headers. Moreover, we can use the Response Caching Middleware to control the caching behavior from the server side. Once we've configured clients and other proxies to determine how to cache the server response, they can read the response caching headers. The HTTP 1.1 Response Cache Specification stipulates that browsers, clients, and proxies need to have caching headers.

What Does "caching" Mean?
The process of temporarily storing frequently used data so that it can be rapidly retrieved is known as caching. The application's overall speed will be improved because there won't be as much need to fetch the same data from the database or other storage devices.

ASP.NET Core Caching Types

  • Multiple Caching Mechanism Types are Supported by ASP.NET Core. They are listed in the following order.
  • In-Memory Caching: The most basic type of caching, in-memory caching works well with a single server. The main memory of the web server houses the data. It is quick and appropriate for data that doesn't require persistence past the web server process' lifetime or require a lot of memory. It works well for storing modest volumes of information.
  • Distributed Caching: Applications that must share data across multiple servers in load-balancing or multi-server environments are best suited for distributed caching. It entails keeping data in an external system, like NCache, SQL Server, Redis, and so forth. Although it requires more work than in-memory caching, large-scale applications must use it to guarantee consistency between requests and sessions.
  • Response Caching: Response Caching is the process of keeping the result of a request-response cycle in the cache in order to serve the resource from the cache in response to subsequent requests rather than having to generate the response from scratch. This method can greatly enhance the performance of a web application, particularly for resources that are costly to produce and don't change frequently.

HTTP Based Response Caching
Now let's talk about the different HTTP Cache Directives and how to control the way caching behaves. Cache-control is the primary header parameter that we utilize to specify whether or not a response can be cached. The cache-control header should be respected and adhered to by clients, proxy servers, and browsers when it shows up in the response.

Let's now examine the standard cache-control directives.

  • public: denotes the ability for a cache to hold the response locally on the client or in a shared location.
  • private: denotes that the response may only be stored in a client-side private cache and not in a shared cache.
  • no-cache: The no-cache flag instructs a cache not to respond to any requests with a stored response.
  • no-store: The no-store flag instructs a cache not to keep the answer.

Browsers and clients understand no-cache and no-store differently, despite the fact that they sound and even behave similarly. We will discuss this in more depth as we go through the instances.

A few more headers, in addition to cache control, can regulate the caching behavior.

For backward compatibility with the no-cache directive and the HTTP 1.0 specification, the pragma header is used. It will disregard the pragma header if we supply the cache-control header.

Vary: This tells it that it can only send a cached response if every field in the header precisely matches the request that came in before. A new response is generated by the server if any of the fields are modified.

Illustrations of HTTP Cache Directives
We will now create an ASP.NET Core application to demonstrate how the cache directives work. Now let's add a controller action method to an ASP.NET Core Web API project that has been created.
public record EmployeeDto
{
    public Guid Id { get; init; }
    public string Name { get; init; }
    public EmployeeType Type { get; init; }
    public string Mno { get; init; }
    public decimal Salary { get; init; }
    public DateTime CurrentDate { get; init; } = DateTime.Now;
}

[HttpGet("{id}")]
public IActionResult GetById(Guid id)
{
    var emp = _employeeService.GetById(id);
    if (emp == null)
    {
        return NotFound();
    }

    return Ok(emp);
}

ResponseCache Attribute
The ResponseCache attribute for an ASP.NET Core application specifies the properties for configuring the relevant response caching headers. This attribute can be used for specific endpoints or at the controller level.

Let's update the API endpoint with the ResponseCache attribute.
[HttpGet("{id}")]
[ResponseCache(Duration = 120, Location = ResponseCacheLocation.Any)]
public IActionResult GetById(Guid id)
{
    var emp = _employeeService.GetById(id);

    if (emp == null)
    {
        return NotFound();
    }

    return Ok(emp);
}

The max-age header, which we use to set the cache duration for two minutes (120 seconds), is produced by this Duration property. In a similar manner, the cache-control header's location will be set by the Location property. Both the client and the server will be able to cache the response because we have the location set to Any, which is similar to the public directive of the cache-control header.

Let us now access the API endpoint and confirm these contents within the response headers.
cache-control: public,max-age=120

Furthermore, if the browser uses a cached response after we repeatedly invoke the endpoints, the response from the disk cache will be indicated in the status code.
200 is the status code (from disk cache).

Let's now examine the various ResponseCache parameter options.

All we have to do is update the Location property to ResponseCacheLocation.Client in order to change the cache location to private.
[ResponseCache(Duration = 60, Location = ResponseCacheLocation.Client)]

By doing this, the cache-control header value will be altered to private, indicating that the response can only be cached by the client.
cache-control: private,max-age=60

Let's now change ResponseCacheLocation.None as the Location parameter:
[ResponseCache(Duration = 60, Location = ResponseCacheLocation.None)]

This will cause the client to be unable to use a cached response without revalidating with the server, as it will set the cache-control and pragma headers to no-cache:

We can confirm that the server always generates a fresh response in this configuration, and the browser never uses the cached response.
cache-control: no-cache,max-age=60

We can confirm that the server always generates a fresh response in this configuration, and the browser never uses the cached response.

NoStore Property
Let's now set the ResponseCache attribute's NoStore property to true.
[ResponseCache(Duration = 60, Location = ResponseCacheLocation.Any, NoStore = true)]

This will cause the response's cache-control header to be set to no-store, telling the client not to cache the response.
cache-control: no-store

Keep in mind that this will take precedence over the Location value we set. The client won't save the answer in its cache in this instance either.

Though the cache-control no-cache and no-store values might produce identical test results, different browsers, clients, and proxies interpret these headers in different ways. No-cache simply means that the client should not use a cached response without revalidating with the server, whereas no-store instructs clients or proxies to not store the response or any portion of it anywhere.

The VaryByHeader property of the ResponseCache attribute can be used to set the vary header.
[ResponseCache(Duration = 60, Location = ResponseCacheLocation.Any, VaryByHeader = "User-Agent")]

Here, we set the VaryByHeader property to User-Agent, which means that if the request originates from the same client device, it will use the cached response. The User-Agent value will alter and the client device will request a fresh response from the server. Let us confirm this.

Let's first see if the response headers contain the vary header.
cache-control: public,max-age=60
vary: User-Agent

Consequently, we can force the server to send a fresh response for a different device by configuring the VaryByHeader property to User-Agent.

VaryByQueryKeys Property
When the specified query string parameters change, we can force the server to send a new response by utilizing the VaryByQueryKeys property of the ResponseCache attribute. Naturally, if we set the value to "*," we can create a fresh response each time a query string parameter changes.

For instance, if the ID value in the URI changes, we might want to produce a fresh response.
    …/emp?id=53C68EE5-107B-42DB-821E-E1F893C5BDA3
    …/emp?id=6E5692FA-EEF6-426A-B280-EF444CB2BA1E

To do this, let's alter the Get action to add the id parameter and supply the ResponseCache attribute's VaryByQueryKeys property.
[ResponseCache(Duration = 60, Location = ResponseCacheLocation.Any, VaryByQueryKeys = ["id"])]

Recall that in order to set the VaryByQueryKeys property, we must activate the Response Caching Middleware. The code will raise a runtime exception if it doesn't.

Response Cache Middleware
When a response can be cached, the ASP.NET Core application's Response Caching Middleware establishes this and stores and serves the response from the cache.

The Response Caching Middleware can be enabled by adding a few lines of code to the Program class.

// service inject
builder.Services.AddResponseCaching();

// in the middleware
app.UseResponseCaching();

Using the AddResponseCaching() method, we must first add the middleware. Afterwards, we can use the UseResponseCaching() method to configure the application to use the middleware.

That is all. Now that the Response Caching Middleware has been turned on, the VaryByQueryKeys property ought to function.

Now that the application is running, let's check the response cache.

It is evident that if the query string remains unchanged, we will receive a cached response; however, if we modify the query string, the server will send a fresh response. Let's examine the response cache and modify the value of the query string.


Take note that the VaryByQueryKeys property does not have a corresponding HTTP header. Response Caching Middleware oversees managing this HTTP feature.

We learned the new technique and evolved together.

Happy coding!

HostForLIFE ASP.NET Core 9.0 Hosting

European Best, cheap and reliable ASP.NET hosting with instant activation. HostForLIFE.eu is #1 Recommended Windows and ASP.NET hosting in European Continent. With 99.99% Uptime Guaranteed of Relibility, Stability and Performace. HostForLIFE.eu security team is constantly monitoring the entire network for unusual behaviour. We deliver hosting solution including Shared hosting, Cloud hosting, Reseller hosting, Dedicated Servers, and IT as Service for companies of all size.

 



European ASP.NET Core 9.0 Hosting - HostForLIFE :: An Explanation of RSA Encryption and Decryption in the ASP.NET Core and Framework

clock September 2, 2024 08:39 by author Peter

An asymmetric cryptography algorithm is the RSA algorithm. In actuality, asymmetric refers to the fact that it operates on both the public and private keys. As implied by the name, the private key is kept secret while the public key is distributed to everybody. I've used the BouncyCastle package for RSA encryption and decryption in the sample below.

Notes

  • Key Size: The example uses a 2048-bit key, which is a common and secure size for RSA.
  • Encoding: Data is encoded as UTF-8 before encryption and decoded back after decryption.
  • Security: Always handle and store keys securely. Exposing private keys or mishandling encrypted data can compromise security.

Step 1. First, you need to install the BouncyCastle package. You can do this via NuGet.

Step 2. Import the required package into the service.
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Encodings;
using Org.BouncyCastle.Crypto.Engines;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.OpenSsl;
using Org.BouncyCastle.Security;


Encryption Complete method
public  string EncryptRSA(string plaintext)
{
    string encryptedText = "";
    byte[] plaintextBytes = Encoding.UTF8.GetBytes(plaintext);

    // Load the public key from a PEM string or file
    string publicKeyPem = @""; // Replace your public key here
    AsymmetricKeyParameter publicKey;
    using (var reader = new StringReader(publicKeyPem))
    {
        PemReader pemReader = new PemReader(reader);
        publicKey = (AsymmetricKeyParameter)pemReader.ReadObject();
    }
    // Initialize the RSA engine for encryption with the public key
    IAsymmetricBlockCipher rsaEngine = new Pkcs1Encoding(new RsaEngine());
    rsaEngine.Init(true, publicKey); // true for encryption
    // Encrypt the data
    byte[] encryptedData = rsaEngine.ProcessBlock(plaintextBytes, 0, plaintextBytes.Length);
    // Convert the encrypted data to a Base64 string for easy transmission/storage
    encryptedText = Convert.ToBase64String(encryptedData);
    return encryptedText;
}


Breakdown of the encryption method

Step 1
plaintextBytes: The input string is converted to a byte array using UTF-8 encoding. This byte array represents the data to be encrypted.
byte[] plaintextBytes = Encoding.UTF8.GetBytes(plaintext);

Step 2

StringReader: The publicKeyPem string is passed to a StringReader to create a text reader.
PemReader: This reads the PEM-formatted key and converts it into an AsymmetricKeyParameter object.
using (var reader = new StringReader(publicKeyPem))
{
    PemReader pemReader = new PemReader(reader);
    publicKey = (AsymmetricKeyParameter)pemReader.ReadObject();
}

Step 3

  • IAsymmetricBlockCipher: This interface represents the RSA encryption engine.
  • Pkcs1Encoding: This wraps the RsaEngine to add PKCS#1 padding, which is commonly used in RSA encryption.
  • Init Method: The RSA engine is initialized for encryption by passing true along with the public key.

IAsymmetricBlockCipher rsaEngine = new Pkcs1Encoding(new RsaEngine());
rsaEngine.Init(true, publicKey); // true for encryption


Step 4

  • ProcessBlock: This method processes the data (encrypts it) using the initialized RSA engine. It takes the plaintext bytes and returns the encrypted byte array.
  • Convert.ToBase64String: The encrypted byte array is converted to a Base64 string. Base64 encoding is used to make the encrypted data easier to transmit or store, as it converts binary data into ASCII string format.

byte[] encryptedData = rsaEngine.ProcessBlock(plaintextBytes, 0, plaintextBytes.Length);
encryptedText = Convert.ToBase64String(encryptedData);

Output Sample for RSA Encryption

Decryption Complete method
public string DecryptRSA(string encryptedText)
{
    string decryptedText = "";
    try
    {

        string pemPrivateKey = @""; // Replace your private key here
        RsaPrivateCrtKeyParameters keyPair;
        using (var reader = new StringReader(pemPrivateKey))
        {
            keyPair = (RsaPrivateCrtKeyParameters)new PemReader(reader).ReadObject();
        }
        var rsaParams = DotNetUtilities.ToRSAParameters(keyPair);
        using (var rsa = new RSACryptoServiceProvider())
        {
            rsa.ImportParameters(rsaParams);
            // Convert encrypted text from Base64
            byte[] encryptedData = Convert.FromBase64String(encryptedText);
            // Decrypt the data
            byte[] decryptedData = rsa.Decrypt(encryptedData, RSAEncryptionPadding.Pkcs1);
            return Encoding.UTF8.GetString(decryptedData);
        }
    }
    catch { }
    return decryptedText;
}


Output sample for decryption


Conclusion

  • The method loads a public RSA key from a PEM string.
  • It initializes an RSA encryption engine using BouncyCastle.
  • The plaintext is encrypted using the public key, and the resulting encrypted data is returned as a Base64-encoded string.

This encryption method ensures that the plaintext is securely transformed into an encrypted format using the RSA algorithm, which can then only be decrypted by the corresponding private key.

HostForLIFE ASP.NET Core 9.0 Hosting

European Best, cheap and reliable ASP.NET hosting with instant activation. HostForLIFE.eu is #1 Recommended Windows and ASP.NET hosting in European Continent. With 99.99% Uptime Guaranteed of Relibility, Stability and Performace. HostForLIFE.eu security team is constantly monitoring the entire network for unusual behaviour. We deliver hosting solution including Shared hosting, Cloud hosting, Reseller hosting, Dedicated Servers, and IT as Service for companies of all size.



About HostForLIFE

HostForLIFE is European Windows Hosting Provider which focuses on Windows Platform only. We deliver on-demand hosting solutions including Shared hosting, Reseller Hosting, Cloud Hosting, Dedicated Servers, and IT as a Service for companies of all sizes.

We have offered the latest Windows 2019 Hosting, ASP.NET 5 Hosting, ASP.NET MVC 6 Hosting and SQL 2019 Hosting.


Month List

Tag cloud

Sign in